鸟类基因组及演化生物学研究

鹦鹉基因组

文章引用

Ganeshkumar Ganapathy, Jason T Howard, James M Ward, Jianwen Li, Bo Li, Yingrui Li, Yingqi Xiong, Yong Zhang, Shiguo Zhou, David C Schwartz, Michael Schatz, Robert Aboukhalil, Olivier Fedrigo, Lisa Bukovnik, Ty Wang, Greg Wray, Isabelle Rasolonjatovo, Roger Winer, James R Knight, Sergey Koren, Wesley C Warren, Guojie Zhang, Adam M Phillippy, and Erich D Jarvis, 'High-Coverage Sequencing and Annotated Assemblies of the Budgerigar Genome', GigaScience, (2014).

英文摘要

Background
Parrots belong to a group of behaviorally advanced vertebrates and have an advanced ability of vocal learning relative to other vocal-learning birds. They can imitate human speech, synchronize their body movements to a rhythmic beat, and understand complex concepts of referential meaning to sounds. However, little is known about the genetics of these traits. Elucidating the genetic bases would require whole genome sequencing and a robust assembly of a parrot genome.
Findings
We present a genomic resource for the budgerigar, an Australian Parakeet (Melopsittacus undulatus) -- the most widely studied parrot species in neuroscience and behavior. We present genomic sequence data that includes over 300× raw read coverage from multiple sequencing technologies and chromosome optical maps from a single male animal. The reads and optical maps were used to create three hybrid assemblies representing some of the largest genomic scaffolds to date for a bird; two of which were annotated based on similarities to reference sets of non-redundant human, zebra finch and chicken proteins, and budgerigar transcriptome sequence assemblies. The sequence reads for this project were in part generated and used for both the Assemblathon 2 competition and the first de novo assembly of a giga-scale vertebrate genome utilizing PacBio single-molecule sequencing.
Conclusions
Across several quality metrics, these budgerigar assemblies are comparable to or better than the chicken and zebra finch genome assemblies built from traditional Sanger sequencing reads, and are sufficient to analyze regions that are difficult to sequence and assemble, including those not yet assembled in prior bird genomes, and promoter regions of genes differentially regulated in vocal learning brain regions. This work provides valuable data and material for genome technology development and for investigating the genomics of complex behavioral traits.

下载链接